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ABSTRACT
A novel time domain simulation approach for
analyzing real three-dimensional (3-D) passive
microwave structures is presented. The
electromagnetic fields of the structure under
investigation are expanded into a hierarchical
system of wavelets and scaling functions for all
three dimensions leading to a stable, multiscale
algorithm. By neglecting small wavelet coefficients
and thereby reducing the computational effort, this
method is equivalent to a finite difference in time
domain scheme with a time dynamic space
adaptive grid. An overview of the main ideas and
advantages of this new method as well as the
results of two numerical examples are given.

I. INTRODUCTION
In recent years time domain techniques for

solving Maxwell's equations in form of an initial
boundary value problem have become very
popular.  The most common techniques are the
finite-difference time-domain (FDTD) [l] and the
transmission-line matrix (TLM) [2] methods. Both
methods use samples in time and space of field
quantities at predefined grid points to approximate
the physical continuum. The chosen grid is of
crucial importance for the accuracy of the solution
and the numerical expense of the simulation. The
discretization of the structure must be sufficient for
all field distributions that occur during the
simulation process. The approach presented here
enables a time dynamic spatial discretization of
Maxwell's differential equations that automatically
adapts to the local regularity of the solution.

II. THEORY
Starting with Maxwell's curl equations in the

time domain for non-conducting isotropic media

∂
∂ ε

∂
∂ µt t

E H H E= = −1 1
curl    curl, , (1)

then the time derivatives are approximated with
central finite differences of second order so explicit
equations with respect to time are obtained:

E E Hn n nt= +− −
1

1

2∆
ε

curl ,

H H En n nt+ −= +1 2 1 2/ / ∆
µ

 curl .(2)

The field En  is the electric field strength at time

step n, H
n+ 1

2  the magnetic field strength at time
step n+1/2. Then the electromagnetic field in time
domain is expanded into a system of orthonormal
basis functions. These basis functions are derived
from all permutations that can be constructed as a
product of three one-dimensional (1-D) compactly

supported Daubechies wavelets ( )ψ
k
j ⋅  or scaling

functions ( )ϕ
k
j ⋅  [4]. All these permutations form a

complete orthonormal basis for L2(R3).

The fast wavelet transform and all techniques
used in the procedure are leading to fast and simple
algorithms. In contrast to the multiresolution time
domain (MRTD) scheme presented in [5], [6], no
integrals have to be evaluated.

The multiresolution representation of the field
solution can be used to reduce the number of
unknowns. For areas with a smooth field
distribution, wavelet coefficients that describe finer
details become very small and can therefore be
neglected. This is demonstrated in figure 1a) to 1c)
where the field distribution (a), the wavelet
coefficients (b) and the considered wavelet
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coefficients (c) of an excitation point on a
microstrip line are shown.

This is equivalent to a local reduction of the
discretization density. In the vicinity of field
singularities or sharp transitions the corresponding
wavelet coefficients with small dilation parameters
must be taken into account because they contribute
significantly to the solution, so the full
discretization density is maintained in these
regions. During the simulation process a sequence
of field solutions is calculated. For every time step
n only the wavelet coefficients that are larger than a
given threshold λq  in time step q and all adjacent

coefficients are considered. The number of discrete
time steps ∆q n q= −  must be equal or smaller

than ( )∆ ∆ ∆q s v tphmax = /  in order to track

propagating waves. ∆s denotes the finest discre-
tization density and vph  is the phase velocity.

This means that it is sufficient to test negligible
wavelet coefficients every qmax time steps and to

use this information for the subsequent time steps.
Besides,
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Fig. 1: a) Field distribution on a microstrip line.
b)  The wavelet coefficients of the field
shown near the excitation point in Fig. 1a.
c) Considered (❚ ❚) and neglected (ÿ )
wavelet coefficients.

the threshold is recalculated every qmax time

steps as a fraction of the energy of all wavelet
coefficients.

To utilize the compressed multiscale
representation of the electromagnetic field, (2) must
be expressed in terms of wavelets and scaling
functions. For this purpose two operators are
introduced. The first one is the curl operator that
can simply be divided into consecutive
applications of derivative operators. The second
operator accounts for the material distribution.
Using these operators (2) can be rewritten:

( ) ( )E E Hw
n

w
n

w
ntM C= +− −1 1 2∆ ε ε / ,

( ) ( )H H Ew
n

w
n

w
ntM C+ −= +1 2 1 2/ / ∆ µ µ ,

(3)
where Ew  and H w  represent the wavelet

expansion of the electromagnetic fields. M and C
denote the material and curl operator, respectively.
To obtain a stable algorithm, the time step ∆t  must
be determined according to the derivative operator
[7]. For second-order operators the maximum
stable time step can be obtained from the stability
condition of the FDTD method. For higher-order
derivative operators the stability condition
becomes more restrictive, but the numerical
dispersion decreases [9], [10] so that the
discretization density can be reduced. Perfect
electric or magnetic walls are modeled utilizing the

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



symmetry conditions for the tangential fields, which
are taken into account for the construction of the
derivative operators. In addition, absorbing
boundary algorithms can be realized as operators.
In a first approach the absorbing boundary
condition of first-order proposed by Mur [11] has
been implemented into the developed software.

The algorithm that results was found to be
stable for all numerical tests and applications. In
addition, the method does not suffer from the
excitation of spurious modes like the MRTD
method [5], [6] which up to now apparantly only
has been applied to two-dimensional problems [6].
A further advantage in comparison to the MRTD
method is the use of compactly supported
Daubechies wavelets..

III.  NUMERICAL RESULTS
To verify the new method, two typical three-

dimensional microwave structures have been
investigated. The first example is a dielectric post
discontinuity in a WR-90 waveguide. The geometry
of the structure as well as a comparison of
measured and simulated results are shown in Fig.
2.

The discontinuity was simulated by applying a
derivative operator of second order. As basis
functions compactly supported Daubechies
wavelets and scaling functions with two vanishing
moments were used. Three different scales were
taken into account, so the ratio of the finest and
coarsest discretization density in one direction is
equal to four. Assuming the finest discretization
density, the width of the waveguide was discretized
using 58 wavelet coefficients. The length of the
dielectric post was discretized with 16 coefficients.
The two waveguide ports were terminated with the
absorbing boundary condition proposed by Mur
(first order) [11] combined with super absorption
[12]. The systematic error caused by the imperfect
boundary condition was corrected using the
procedure presented in [13].

The second structure under investigation is a
meander line structure on alumina substrate which
was first investigated by Wertgen [14]. The layout
of the microstrip discontinuity and the return loss
are depicted in Fig. 3.
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Fig. 2: a) A 3D-waveguide problem with dielectric
insert. B) Comparison of simulated ()
and measured
( - - - -) results for the reflexion coefficient
of the structure shown in Fig. 2a). c)
Distribution of the wave-let coefficients of
the structure.

The same simulation parameters as for the first
example were used. In addition the same type of
absorbing boundary condition was applied. The
finest discretization for the width of the microstrip
line and the substrate thickness were four and six

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



�

�

�

����

�

��

a)

�

���

���

���

��


�

� � �� �� �
� ��

S11

Frequency f

b)

�

���

���

���

��


�

� � �� �� �
� ��

S21

Frequency f

c)
Fig. 3: a) A microstrip meander line test structure

[14]. b) Comparison of simulated () and
measured (- - - ) reflexion coefficient of the
meander line. c) Comparison of simulated
() and measured (- - -) transmission
coefficient of the meander line.

wavelet coefficients, respectively. Except for a
small frequency shift in the case of the meander
line (which is known also to occur in comparison to
other numerical techniques, so that probably the
measurement is erroneous), the comparison of the
simulated and measured results show excellent
agreement for both examples.
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